Proof of Tate’s conjecture over finite fields

ثبت نشده
چکیده

We start by showing that (1) is injective. Take an u ∈ Hom (A,B)⊗ Zl that maps to zero in HomΓ (Tl(A), Tl(B)). Write u = ∑∞ j=0 l uj , uj ∈ Hom(A,B), and [u]n for ∑n j=0 l uj . Note that since Hom (A,B) is a Z-module [u]n is in Hom (A,B). Now (since u maps to zero) [u]n is the zero morphism A[l ] → B[l], so it kills the ltorsion. As it is well known, this implies the existence of a certain ψn ∈ Hom(A,B) such that [u]n = [l ] ◦ ψn. It follows that [u]n belongs to l Hom (A,B) ⊆ l (Hom (A,B)⊗ Zl), and since clearly u−un is in l n (Hom (A,B)⊗ Zl) too we find that u lies in l n (Hom (A,B)⊗ Zl) for every n. As Hom (A,B)⊗ Zl is of finite type, this implies that u = 0 as claimed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

On the Néron-severi Groups of Fibered Varieties

We apply Tate’s conjecture on algebraic cycles to study the Néron-Severi groups of varieties fibered over a curve. This is inspired by the work of Rosen and Silverman, who carry out such an analysis to derive a formula for the rank of the group of sections of an elliptic surface. For a semistable fibered surface, under Tate’s conjecture we derive a formula for the rank of the group of sections ...

متن کامل

Homomorphisms of Abelian Varieties over Finite Fields

The aim of this note is to give a proof of Tate’s theorems on homomorphisms of abelian varieties over finite fields [22, 8], using ideas of [26, 27]. We give a unified treatment for both l 6= p and l = p cases. In fact, we prove a slightly stronger version of those theorems with “finite coefficients”. I am grateful to Frans Oort and Bill Waterhouse for useful discussions. My special thanks go t...

متن کامل

On Tate’s refinement for a conjecture of Gross and its generalization

We study Tate’s refinement for a conjecture of Gross on the values of abelian L-function at s = 0 and formulate its generalization to arbitrary cyclic extensions. We prove that our generalized conjecture is true in the case of number fields. This in particular implies that Tate’s refinement is true for any number field.

متن کامل

The Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields

In [Tama], a proof of the Grothendieck Conjecture (reviewed below) was given for smooth affine hyperbolic curves over finite fields (and over number fields). The purpose of this paper is to show how one can derive the Grothendieck Conjecture for arbitrary (i.e., not necessarily affine) smooth hyperbolic curves over number fields from the results of [Tama] for affine hyperbolic curves over finit...

متن کامل

Conics over function fields and the Artin-Tate conjecture

We prove that the Hasse principle for conics over function fields is a simple consequence of a provable case of the Artin-Tate conjecture for surfaces over finite fields. Hasse proved that a conic over a global field has a rational point if and only if it has points over all completions of the global field, an instance of the so-called local-global or Hasse principle. The case of the rational n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014